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was either in close association with the compensation
resulting in the removal of the inversion center of the
impurity site or that the impurity cation is essentially
in a cubic site beyond any significant influence of the
distant compensation. In view of the present investi-
gation, some of the observations unexplainable in terms
of the dissociation-association hypothesis can now be
reexamined. For example, the glow curve observed®
when Dy?*t ions in CaF, produced by v radiation are
oxidized to the trivalent state by thermal excitation is
characterized by several prominent peaks. If only the
nonlocal ““cubic” sites are reduced, only one glow peak
can be expected.?* In view of our present discussion,
the multipeaked glow curve of the Dy**— Dy3t+-e~
process in CaF, can be readily accounted for in terms
of the Maxwell-Boltzmann distribution of site sym-
metries depicted in Sec. III.

Finally, a comment should be made on the effect of
the relative sizes of the trivalent cation and the host
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ion which it replaces. In Table I, we detect a trend in
which the tetragonal site and the trigonal site reverse
in prominence as the host ion increases from Ca?* to
Ba**. A qualitative argument may be made on the
basis of the collapse of the 8 nearest-neighbor fluoride
ions about the trivalent cation as it replaces the in-
creasingly larger divalent cation. This will have the net
effect of increasing the shielding between the trivalent
cation and the (1,0,0) F~ interstitial thus reducing ;.
ez on the other hand would increase as the F~ inter-
stitial at (1,1,1) moves closer to the trivalent cation
because of the inward displacement of the nearest
neighbor fluoride ions, thus accounting for the observed
changes in the relative abundance of the first two n.n.
sites. A more quantitative approach is now being
attempted through an extension of the lattice theory
calculations of Franklin?® to a calculation of & and e
for the various (alkaline-earth fluoride): M3+ systems.

% A. D. Franklin, J. Phys. Chem. Solids 29, 823 (1968).
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A method of irreducible tensor operators is described for constructing effective Hamiltonians for non-
Kramers doublets. It is pointed out that this method is superior in several points to other methods. The
exact effective Hamiltonians for all the non-Kramers doublets in 32 point groups are tabulated. These
Hamiltonians involve the effects of magnetic and electric fields up to the second order as well as those of
the hyperfine interactions. The interaction of nuclear spins with a magnetic field is taken into account to
the first order. Finally, selection rules for paraelectric and paramagnetic resonances are derived by use of the
effective Hamiltonians for all the non-Kramers doublets.

I. INTRODUCTION

HE doubly degenerate (not accidentally degen-

erate) levels of molecular systems with an even
number of electrons are called non-Kramers doublets.
They belong to the doubly degenerate irreducible repre-
sentations of the point groups (the single groups). The
purpose of the present paper is to describe a clear
method of constructing an effective Hamiltonian for
non-Kramers doublets and to list all the effective
Hamiltonians which may be used in the analysis of

* Work partly supported by the Broadcasting Science Research
Laboratories of Nippon Hoso Kyokai.

electron paramagnetic resonance and optical experi-
ments for non-Kramers doublets. In our treatment, the
Jahn-Teller effect will be entirely ignored. This effect
can be operative in non-Kramers doublets, but it would
not be so important in the 4 f-electron systems on which
experimental work has been concentrated.

So far, several studies have been done on the spin
Hamiltonian for non-Kramers doublets. Bleany and
Scovil® first introduced a spin Hamiltonian

SczgllBHzSz_l_AIlIzSz+AwSx+AySy, (1)

! B. Bleaney and H. E. D. Scovil, Phil. Mag. 43, 999 (1952).
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with fictitious spin S=1% to analyze the paramagnetic
resonance spectra of the lowest non-Kramers doublet
of Pr3t ion in a trigonal field. In this Hamiltonian,
physical meanings of the last two terms A.S, and A,S,
are unclear, although parameters A, and A, were taken
to have, not unique values, but a distribution of values
representing slightly different environments for different
praseodymium ions. This spin Hamiltonian is different
from the usual spin Hamiltonian in that the spin Hamil-
tonian in Eq. (1) is not invariant with respect to the
time-reversal and spatial-symmetry operations which
leave the real Hamiltonian invariant. These peculiar
points were examined in detail by Griffith.?

As emphasized later, difficulties in constructing the
spin Hamiltonian with fictitious spin S=% for non-
Kramers doublets lie in the fact that the basis functions
of non-Kramers doublets do not have the same trans-
formation properties as the spin functions of S=% with
respect to symmetry operations in space and time. It is,
however, possible to find two spin functions of S>3
which transform in the same way as the basis functions
of non-Kramers doublets.? Recently, Mueller proposed
to use the spin functions of S=1, in which two functions
with M,==1 transform as the basis functions of a
non-Kramers doublet. He derived the effective-spin
Hamiltonian for the C,, D,, and .S, symmetry groups,
which involved the first- and second-order terms of
magnetic and electric fields. The Hamiltonian he de-
rived corresponding to Eq. (1) is as follows:

3C:gll.8HzSz+D(Szz_1)+Aulez
+A2(Szz_Sy2)+Ay(SxSy+Sny> ’ (2)

in which parameter D goes to infinity after the eigen-
values of Eq. (2) are obtained. The second term in Eq.
(2) is introduced to eliminate effects of the M ;=0 state.
In this Hamiltonian, he omitted the terms (S,S.+S.S,)
and (S,S.+S.S,) which connect the M =21 states
with the M =0, even though these terms are allowed by
symmetry considerations. Mueller’s method excluded
the aforementioned difficulties associated with the S=4%
formalism: His effective-spin Hamiltonian is invariant
with respect to the symmetry operations in space and
time to which the real Hamiltonian is invariant.

The disadvantage in Mueller’s method is that one
must introduce extra terms, such as the second term
in Eq. (2), in the Hamiltonian to eliminate unnecessary
effects of the M,=0 state. This disadvantage is more
pronounced when one treats the effective-spin Hamil-
tonian for non-Kramers doublets in the cubic group.
Since the basis functions of these doublets transform
like two spin functions of S=2, one must use, instead
of the S=1, the S=2 formalism to construct the effec-
tive-spin Hamiltonian.

2 J. S. Griffith, Phys. Rev. 132, 316 (1963).

8 W. Hauser, in Paramagnetic Resonance, edited by W. Low
(Academic Press Inc., New York, 1963), Vol. 1, p. 297.

4 K. A. Mueller, Phys. Rev. 171, 350 (1968).
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Such a disadvantage may be removed if one uses
irreducible tensor operators in place of spin operators.
The use of irreducible tensor operators for constructing
an effective Hamiltonian was first made by Tanabe and
Kamimura,” and it was applied to the analysis of
optical absorption lines in ruby by Sugano and Tanabe.S
This kind of effective Hamiltonian is particularly useful
for treating the states with orbital degeneracy non-
Kramers doublets. In Sec. II of this paper, we shall
describe the theoretical background for our method of
an effective Hamiltonian and point out some merits of
of this method. In Sec. III, we shall construct the effec-
tive Hamiltonians for all non-Kramers doublets by the
use of irreducible tensor operators for the O, Dg, and
Dy, point groups. These Hamiltonians have linear and
quadratic terms in the electric and magnetic fields. We
shall also construct the effective Hamiltonians for the
hyperfine interactions in a simple way. In Sec. IV, we
shall at first give some remarks on the effective Hamil-
tonian derived in Sec. ITI. Then, the selection rules for
the magnetic- and electric-dipole transitions between
the split levels of non-Kramers doublets will be tabu-
lated. Finally, the results of our method will be com-
pared with those of others.

II. THEORETICAL BACKGROUND

We shall consider a degenerate state I' of a system
whose symmetry belongs to group G. I' may be an ir-
reducible representation of group G. We denote a set
of wave functions of state I" as ¢1, ¢s," - +, ¢4, which are
the bases of irreducible representation T'. If perturba-
tions such as an external magnetic field, an electric
field, and a distortion are applied to the system, state
I' is admixed with other states I' as the perturbing
Hamiltonian has nonvanishing matrix elements between
states I' and I". However, in principle, these matrix ele-
ments can be brought to zero by applying a unitary
transformation to a set of all the wave functions of the
unperturbed system. Although it is almost impossible
to obtain the exact form of the unitary transformation,
we assume that the matrix of the real Hamiltonian is
now brought to the following form:

i o o Y
Yilx x -0 %
Y| x X {
o R s 0 3
l//q X x!
"X X
0 =x
L5

In this matrix, a subspace spanned by 1, ¥, -+, ¥,

( 5Y.) Tanabe and H. Kamimura, J. Phys. Soc. Japan 13, 394
1958).
6 S. Sugano and Y. Tanabe, J. Phys. Soc. Japan 13, 830 (1958).
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corresponds to state I' in the unperturbed system. The
matrix in this subspace will be called the I' small matrix.

For simplicity, let us consider the case in which the
perturbation is only a distortion which changes the
symmetry of the unperturbed system belonging to
group G into G’. Denoting symmetry operations in G’
together with the operation of time reversal as 77, we
can show that the transformation properties of ¢; and
¥, for operation 77 are the same:

q
T p;= Zl eid (T,
o

a 4)
= ; il i(T).

Then, one can show that the I' small matrix has the
following properties: (I) It is Hermitian. Therefore, it
can be expressed by using ¢? real parameters. (II) Its
elements are correlated by the relation

=2 / dry*3eY;
=y /d‘r(T'g&i)*T/GCT"lT'%-

-5 / dr(T9)*5eT"y,;
=2 8w Au (T")A,(T"). (5)

In Eq. (5), 2 is the summation over the spin coordi-
nates and /'dr is the integration over the space co-
ordinates of electrons. In deriving (5), we have used
Eq. (4) and the relation 7"3¢7"-'=3¢, in which 3C is
the real Hamiltonian involving the perturbation.

In the effective Hamiltonian method, one constructs
an operator JCe, called the effective Hamiltonian,
whose matrix with a given set of bases @;(i=1,2,---, q)
has the properties (I) and (II) of the I' small matrix.
Then, the eigenvalues of matrix of 3C.s; have to give, by
assuming appropriate values for the parameters left
undetermined, the exact splitting and shift of the energy
level of the T state with the distortion. In this case, one
should assume that the energy separations of the T
state from other states are larger than the magnitude
of the splitting and shift so that the manifold of the split
components of the I' state is well separated from those of
other states I".

In constructing 3Ces, we use irreducible tensor
operators X(I'g) whose component X,,(T'y) transforms
like the o base of irreducible representation I'y of
group G;

RXW(FO) =3 Xy (I‘O)D’YO"YU(PO) (R) 3 (6>
o’

where R is a symmetry operation in G and matrix
DTo(R) is the matrix representation of T'y for R. We

SHINAGAWA, AND SUGANO 1

choose, as a set of bases for JCess, functions @;’s which
transform like wave functions ¢.’s (i=1, 2,---, ¢) of
state I' for T representing R and the time-reversal
operations. Then, it is evident that for 7’

TI{55= Z:l {b'jqu;(Tl). (7)
=

Since @;’s are the bases of irreducible representation T,
the matrix of X,,(T'o) with bases @; can be calculated by
the use of Clebsch-Gordan coefficients (I'y | "y’ T'¢yao).
It can be shown that the matrices of X ,,(T) for differ-
ent T'gyo are linearly independent of each other, i.e.,
the matrix of X, (T'y) cannot be expressed by a linear
combination of the matrices for other T'yyo.
Now, we construct operator 3Ce;’ as follows:

Feti’ = > CroyeX 4o(T0) - (8)

To,v0(I'XI'=ZT0)

Since the matrix of 3Ces’ with bases @; involves ¢? in-
dependent matrices, it can reproduce any Hermitian
matrix of dimension ¢. The number of parameters ¢> may
be reduced by imposing the condition that the matrix
elements of 3C.s¢’ should also satisfy the relation in (5).
Because of relation (7), it is evident that this condition
is satisfied only if

T'3Ceti’ T 1=3Cesf . 9)

Operator 3C.s satisfying (9) is the effective Hamiltonian
we want to obtain.

When the perturbations involve external magnetic
and electric fields H and E in addition to the distortion,
one has to add to the real Hamiltonian of the distorted
system the Zeeman term JC, and the Stark term 3JC,
which are given as follows:

JC. :ﬁH : Z(l't_l_zs@) )

3s=eE > 1, (10)
7

in which B=e#/2mc. Even in this case, the matrix of
the real Hamiltonian can be brought to the form given
in (3) and the I' small matrix is Hermitian. Therefore, it
can be reproduced by the matrix of 3Cets’ with bases @;.
However, in this case, coefficients Cr,y, are given as
functions of H and E.

So far, symmetry operations in space and time have
been considered to act on electron systems. However, we
can define symmetry operations acting on both the
electron system and the sources of external magnetic
and electric fields. For these newly defined operations,
H and E transform like 1 and r, respectively: H changes
its sign for time reversal as 1 does. Then, the real
Hamiltonian of the distorted system involving 3¢, and
3¢, is invariant with respect to operation 7, which is
obtained from 7” by allowing it to act on the sources
of the magnetic and electric fields. Relation (5) still
holds for the matrix elements of the real Hamiltonian.
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Therefore, JCess in this case is obtained by imposing
the condition that 3Ces is invariant with respect to
operation 7. In actual problems, we expand Cr,,, in
the power series of H and E and retain only the terms
of small powers.

Our method of effective Hamiltonians has the follow-
ing merits: (1) Since @;’s transform in the same way as
the real wave functions ¥, one can discuss selection
rules for the optical transitions between states I' and
I"(T'>4T") by using the eigenvectors of the effective
Hamiltonian. (2) The physical origin of each term in
the effective Hamiltonian may be understood easily.
This enables us to estimate the order of magnitudes of
undetermined parameters.

III. DERIVATION OF EFFECTIVE HAMILTONIAN

As mentioned in Sec. II, the wave functions of the
non-Kramers doublets transform as the basis functions
of the doubly degenerate representations of the point
groups (the single groups). There are 24 point groups
which have the doubly degenerate representations. We
list these groups in Table I. The notation used in the
present paper is the same as those of Koster, Dimmock,
Wheeler, and Statz.” In Table I, we divide these 24
groups into three series so as to fulfill the following
conditions: First, the symmetry groups in each series
are obtained from the highest symmetry group by the
reduction of the symmetry. Second, in one series, the
degeneracy of the doublets of the highest symmetry
group is not removed by lowering the symmetry from
the highest to the lowest. Thus, we have only three
series; the cubic, the hexagonal, and the tetragonal
series, the highest symmetry groups of which are Oy,
Der, and Dy, respectively. The advantage of dividing
the symmetry groups into three is that we can use just
the tensor operators of the highest symmetry group to
derive all the effective Hamiltonians in each series.
They are considered to be the effective Hamiltonians
for the state of the highest symmetry under appropriate
distortions.

In this section, the method described in Sec. IT will
be employed to obtain the effective Hamiltonians for all
the non-Kramers doublets. As one of the examples, we
first consider the system of the D¢, symmetry. As shown
in Table I, there are four kinds of non-Kramers doublets
in this system. However, as is easily seen, one can use
the same effective Hamiltonian for these four states.
Therefore, we confine ourselves to the I's* doublets.
Considering the relation I'st X T'st =TTy 4 I'6™, one
obtains JCess” as follows:

3ot =a(H,E)V/(T'1H)+b0H,E)T(T:+)
+c(H,E)Vo(Tsh)+dE,E)V,(Tsh), (11)
in which V(I") and T(T') are real and purely imaginary
7 G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz,

Properties of the Thirty-Two Point Groups (The MIT Press,
Cambridge, Mass., 1963).
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TasLE I. Doubly degenerate representations of the point
groups (the single groups).

Tetragonal series

D Dy Csx Du Ca Cy Sa
st Tt+Ty*
r T;
I 5 Ts I 4T T's+4Ty T3+Ty
Hexagonal series
Den  Ds Cen Cev Dza Ds,
I'st Tst4-Tet st
r 5
Ts s I's~4Te r s~ Ts
Tet Tot+Tst (I's™)
r T T
I S o R ¢ V) s
Cs Ds Ca: Ca Csn Cs
Tot+Tst T5+T
I's4-T
5+ 6 T Ty 4T3~ r P2+I‘3 T +P
It : (Tot4T5™) : (Ty+T3) e
(T +T%7) (T's+T)
Cubic series
On 0] Taq Ty T
It Tyt 4Tt
s T3 I's Iy —T5 o1

irreducible tensor operators, respectively: In general,
X(T') may be expressed as the sum of V(I') and T(T"),
and in (11) one has used the fact®8 that

<P,lT(P0),[P>=O for Ty= P1+, Pﬁ+,

<I‘HV(I‘0)”P>=O for P0=P2+. (12)

The reduced matrix elements of these tensor operators
with bases @(I's,+) and @(T'st,—) may be chosen as

(TsH| T (T || T5t) = —V2,
(TsH|V(Teh)|| 5Ty =2, (13)

so that the matrices of the tensor operators are given by

+ - + -

ol 2} v )

+ -

!

We expand coefficients ¢(H,E), 6(H,E), ¢(H,E), and
d(H,E) in powers of H and E, and impose the condition
that 3Cets’ should be invariant to the symmetry opera-
tions in group Dg, as well as to the time-reversal opera-
tion acting on both the electron system and the sources
of the fields.

Let us first consider the first-order terms in external
fields. Imposing the time-reversal invariance, we note
that the magnetic field combines with the pure imagi-

(14)

8 S. Sugano, Y. Tanabe, and H. Kamimura, T/eory of Muliiplets
of Transition-Metal Ions in Crystals (Academic Press Inc.,
New York, to be published).
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TaBLE II. The reduced matrices of the tensor operators and their matrix elements.

Dy symmetry group

(CE|V @) [Tst)=V2, (U7 (T2 |[Ts) = — V24,

+ = + =
10 1 0

V() =[ :l, T = |: :I,
0 1 0 -1

where  G(I's%, &) =F (5/V2)[S(Ts"x) i@ (Tsy) ],

(T (| V () [Ts2) = —2,

TsE||V (@TH)[[Dst) = —V2,

+ - + =
01 0 —i
TN L RN Ly
10 i 0

(e==1).

Dgp symmetry group?®

TV (TH)[Ts*) = V2,

+ - + -
10 1 0

48] =[ jl; T(reh)= [ :|7
0 1 0 —1

(Ds*|| T (Toh) [[Ts*) = —V2i,

sV (T |Ts*) =2,

+ - + =
0 —i 0 1

V,a«m:[ } V,m:[ J
i 0 10

O;, symmetry group

(T V(T [[Tat) = V2,

+ = + -
10 1 0

SR T |
01 0 —1

where  $(T's*, &) =F (i/V2)[P(Ts",1) £ip(T,2)],
(r57,1) =VBayz (x*—57),

G(rsh,1) <32 =12, 3(s*,2) =V3(a*—)?),

(O T (@) [at) = — V2,

TV (T |[Ts) =2,

+ - +
0 1 0 1z

Vi(ls%) = [ } Va(Tst) = |: ],
10 —z 0

(e==1)
P('37,2) « —xyz(322—72).

= The tensor operators and thej 1matrices for the I's* doublets are the same as those for the I's*.

nary operator 7'(T's*). Further imposing the Dgp-
symmetry invariance, we have the term 7'(TI':h)H.,
since H, transforms as I';*. On the other hand, the
electric field is invariant to the time reversal, so that it
combines with the real tensor operators V(T'y), V.(T'st),
and V,(T'¢t). However, the first-order terms of the
electric field are not invariant with respect to the sym-
metry operations of the Dg;, group. Next, let us consider
the second-order terms of the external field. It is not
difficult to see that there are six invariants given as
follows:

> HuHu V(T )(TsmDsm | Doy )(Tey'Toy | Tier)

mm’ vy’

=A/N2HLPV(Dsh)+H2V_(T'sh)}

=5{(H.>—H)V,(T6")+2H.H,V.(Ts")}, (15)
H 2V (D1+){T2eT ez | Tie1) = H 2V (1), (16)
Z, HpH o V(T 1) smTsm’ | Trer)
" —VZH,H_V (')
=—Q/N2)HS+HAHV(IH), (17)

and the terms replaced (H,,H,) by (£,,E,) in the above
expressions, where

Vi (T6h) =F (i/V2)[Vo(Ts") £V, (T ]

and H,.=F(1/V2)(H,%1H,).

To illustrate the method of deriving the effective
Hamiltonians for other symmetry groups in the hexag-
onal series, we consider the case of the D, symmetry
group as an example. From the compatibility relations

between the Dg, and the Dy, symmetry group, the ir-
reducible representations of I'tt and Ty~ of the Dg
group are reduced to I'y of the Dy, group. Therefore, in
addition to the seven invariants of the Dg, group ob-
tained above, there should be terms of the I';~ sym-
metry of Dg, which are invariants in the Ds, group.
The I';~ term is linear in the electric field and given by

> EnVoy(TeH){(Tsmley | Taes)
' G NDLE_V (Do) = EoV(Te)]
L UNDIEV (T —EVoTs)], (19)

where E,=F(i/V2)(E,%iE,). Thus, the effective
Hamiltonian for the non-Kramers doublet of the Djp
point group is given by

Hott= 4 |5HzT(F2+) +R [:E:c Vy(F6+) —Esz(P6+):|
+G1[(H12 _Hyz) Vy(F6+) +2H1Hy VZ(I‘6+)]
+GIE(Ex2 - Eu2) Vy(P6+) +2E$E,, Vz(F6+)]
+MH2V (D) +M(H2HH P2V ()
+MLE2V (D) +Mo(E2+E,A)V (DY), (19)

where g8, R, Gi, G1, M1, M>, My, and M, are real
numbers. The last four terms in Eq. (19) only give the
shifts of the energy levels. These terms are necessary
for studying optical spectra of paramagnetic ions in
crystals.

In this way, we can derive the effective Hamiltonians
for all the symmetry groups in the hexagonal series. For
the cubic and tetragonal series, we use the tensor oper-
ators whose necessary matrices are given in Table II.
In order to obtain the matrices of the tensor operators,
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F16. 1. Systems of the coordinate axes for the groups (a) Du, Ds, Ciy, Dag, Cin, Cs, and Ss; (b) Dea, Cen, Cey,

Dad, Dsh, De, Ce, D3, Ca, Csv, C3i, and C3}.; (C) Oh, O, Td, Fh: a.nd T‘

TasLE III. Effective Hamiltonian linear and quadratic in magnetic and electric fields.

g11BH 0,

RE.0y

RE;O’,, —RIEzU'z

R (Eoy+Ey0z)

R(E 00— Eyay)
R(E:0:—Ey0y)+R' (Ez0y+Eyov)

Gi(H2—H Yo,+2GH Hyoy

Gi(H2—H o426 H Hyoy+G (H2—H Doy, —2Gs' H Hyo,

Gi[ (H2—H o, +2H Hyo, ]

Gi[(H2—H 2o, +2H Hyo, +GoH,(Ho0.— Hyoy)

Gi[(H2—H o, +2H, Hyo, 14+G/'[ (H2—H 2oy —2H Hyo,]

Gl[ (sz— Hy2)‘7x+2HzH1/‘77/]+GIIE (sz - Hf)”v - ZIIIHu”z] +G.H, (Hza’z - Hua'y) +Gﬂlflz (Hzo'v +111/‘72)
GiL(1/V3) (H2+H2—2H 2o+ (H2—H 2oy ]

GiL(1/V3) (H+H,*—2H Ao+ (H2— H2)o, 1+Gi'[ (1/V3) (HA+H 2 —2H 2oy — (H— H o= ]
Gi(E2—E,)0:+2G:E.Eyay

GL(E2—E 2 0+42GoE Eyoy+Gy (B2 —E 2oy — 26y E.Eyos

Gi\[(E2—EP)o.+2E.Ey,]

Gi[ (E2—E2)0:+2E Eyoy 1 +GoE, (Er0.— Eyoy)

G\[(E2—EP)0,+2EEyo, ] +G'[ (EL2—E2)a,—2EEyo.]

Gl (E2—ER)02+2E.Eyo,]+Gy' [ (E2—E2)0y—2E Eyoy ] +GoE, (Booo— Eyoy) +Go' Bo (Eooy+Fyos)
Gi\[ (1/V3) (E24-E2—2E2) 0.+ (E2—E2)a,]

Gl[ (1/\/3) (E22+Eu2 - 2Ez2)¢7:=+ (E:cz '—Eyz)ﬂ'y] +éll[ (1/‘5) (E22+E112_‘ 2Ezz)“1/ - (E:cz - Eyz)"'zj
guBH:E.0.

K (HzEz+H1/Ev)¢7z

K(H.E,—H E,)o,

Ky(H E,+H,E,)o,+Ks(H,E,—H,E,)o,

K(H,E,+H,E)o,

Ki\(H E.—HyEy)o,+Ko(H.Ey+HyEy)o,

K (Hsz+HvEy +HzEz)0'z

M\HM1+My(H2+HA)1

Mo(H2+HHH.)1
M\E21+My(E2+EP)1

Mo(E2E2+E2)1

Dan, D4, Csp, Doa, Cap, Cy,
Si; Den, Cen, Covy, Dsa,
Dsn, Dg, Cs, D3, Cs, Csy,
Csiy Can

Dy

S4

Dy

DBh, CSv

Can, Cs

Dap, D4, Cayy, Dog
Cun, Cs, S4

Den, Ds, Cey, Dan
Dsa, Ds, Cs

Cen, Ce, Can

Cy, Cs

O, O, Ty

Tw, T

Dan, Dy, Cay, Daa
Can, Csy S

Dep, D, Ce, Dsn
Dsa, D3, Csy

Cen, Co, Can

Cs;, Cs

O, O, Ty

Tw T

C4p, C4; CG'p’ Ce, Cau, C:}
C4v; Csv, Ce, Cav, Cs
Dy; Ds, Cs, D3, Cs

Cy

D

Sa

Ta T

Dap, Ds, Csy, Dsg, Cap, Cs,
S4; Den, De, Cen, Cov,
Dsa, Dsp, Cs, D3, Cs, Cay,
Csi, Can

Os, O, Ta, Tn, T

Dan, D4, Cusy, Daa, Can, Cs,
S4; Den, Ds, Cen, Cov,
Dsq, Dsp, Cs, D3, Cs, C3p
Csi, Can

O O, Ta, T, T
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TasLE IV. Effective Hamiltonian of hyperfine interaction.

Ao APRBI2—I(I+1)}-1

Bi(I2—I2)aos+By(Ll,+1,0)0,

Bi(I2—~1Noz+Be(IIy+II)oy+By' (I2—12ey— By (11,4 1,1.)0,

Bl[(lzz—luz)”z+ (IIIV+Iny)0'y:]

BI[(Izz“‘Iyz)o'x"' (Iny'*‘]ylz)a'u]‘{‘Bz[ (Izlz‘l'lzlz)a'x— (Iylz+lzly)0'ﬂ] .
Bl[(lzz_lyz)ax‘l‘ (Izly'l_lle)au]'f‘Bl’[ (I:c2_11/2)°'1/_ (Izly+1y1:c)°'x:|

D4h, D4, C41;, D2,1, C4h, C4, S4; Dsl,, Ds,
Cen, Cov, D3a, Dsn, Cs, D3, C3, Cyy, Cs;,
Can

Dyp, Dy, Cayy Dog

Cun, Csy Ss

Den, Ds, Cey, D3

D3q, D3, Csy

Céen, Co, Csp

BiL(I*— 1Yo+ (IzIy+IvIz)0u:]+Bll|: TP =1)oy— TIy+1y15)0s]

FBoL (LLoA-LoI )or— (Il A4-1.1,)0, + B [T LoD )oy+ (1 4-1.1,)0,]

B (1/B)BI2—=1(I+1)Joo— (12— 1,20y}

BAA/N)BIA~1(I+1)Jos— (2 =12y} +B{ (1/B8) (3121 (I+1) Joy + (12 —1,%) a2}

Csi, Cs
On, O, Ty
Ta T

we have used the Clebsch-Gordan coefficients for the
On, D, and Dy, groups given by Koster, Dimmock,
Wheeler, and Statz.” In the same way, we can obtain
the effective Hamiltonian for the non-Kramers doublets
of all the symmetry groups shown in Table I. The results
are given in Table ITI. In Table III, the matrices of the
tensor operators given in Table IT are, for convenience,
replaced by the Pauli spin matrices as follows:

V({rf)=1, T(I'y)=0., V({Is")=0., V(Ii)=0,
for the Dy, group,
V(M) =1, T(T)=0., Vu(ls")=0,, V,(Ts")=0,
for the D¢, group,
and

V() =1, T(TM)=0., Vi(Ts")=0s, Va(Ts")=—0,
for the O, group.

It should be noted that ¢4, 0y, and o, do not mean the
spin—angular-momentum operators.

The effective Hamiltonian for the hyperfine inter-
action can be constructed in the same way as that for
the ?S+1E cubic terms is constructed.® We replace an
electron spin S by a nuclear spin 7 in the treatment of
2SH1E cubic term. The 2(2I+1)X2(2I-+1) secular
matrix can be represented as the linear combination of
matrices of the products I,%X, (T) (0<k<2I, IXT
=3T) with the basis $(IT,I.y), where I,® is the ir-
reducible nuclear-spin—tensor operator of the degree k.
The effective Hamiltonian of the hyperfine interaction
is, thus, given by

HerMf= 3 Aqk(POYO)Iq(k)Xvo(FO) .

kqToyo
The real Hamiltonian of the hyperfine interaction? is
given by
2y

(20)

3ni= (288nun/1)2. Ni-1/7:2,
where
N.i =1¢—S¢+3ri(ri . Si)/r'ia .
This Hamiltonian is invariant under the symmetry

9B. R. Judd, Operator Techniques in Atomic Spectroscopy
(McGraw-Hill Book Co., New York, 1963), p. 85.

operations of the spatial and the time-reversal opera”
tions acting on both an electron system and a nucleon
system. We can, thus, obtain the effective Hamilton-
ian for the non-Kramers doublets by constructing the
invariants under the symmetry operations of the system
in question. However, without doing this process, we
can also obtain the effective Hamiltonian by the use of
the fact that the nuclear-spin 7 transforms as the mag-
netic-field H: The effective Hamiltonian of the hyper-
fine interaction can easily be obtained from that of the
Zeeman term by replacing the magnetic field H by the
nuclear spin /. For example, for the Dy, symmetry
group, it is given by

Fett = Anl.T(TyH)+P[32—I(I+1) ]V (i)
FBLIS~LAV (T + LTy +1,0:) Vo(Tst) . (22)

It should be noted that 2H,.H, must be replaced by
(I I,41,1,) to make the effective Hamiltonian Hermi-
tian. The term [31.2—I(I41)]V(I'1+) is included in
Eq. (22), which splits the states with I>1. The effective
Hamiltonian of the hyperfine interaction for all the
non-Kramers doublets are given in Table IV.

The effects of the nuclear Zeeman interactions can
also be treated in a similar way. The effective Hamil-
tonians for these interactions to the first order are shown
in Table V.

IV. DISCUSSION
A. Remarks on Effective Hamiltonian

As the basis of our effective Hamiltonian, we have
chosen function @; which transforms in the same way as
the unperturbed wave function ¢, of the I' state for both
symmetry operations R of group G and the time re-
versal: These operations leave the unperturbed system
invariant. Therefore, if one has one-to-one correspon-
dence between ¢; and the perturbed wave function ,,
the association of @; with y; is unique. As shown in Eq.
(4), such a correspondence between ¢; and y; exists if
the same irreducible representation does not appear
more than once in the distorted systems. This is cer-
tainly the case in our problem as shown in Table I.
Here, Zeeman and Stark terms are not considered to
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TasLe V. Effective Hamiltonian involving magnetic field and nuclear spin.

Cr(Holo— HyI)0u+Co(H I y+H, 10y

Cr(Hols—H,L) o0+ Co(H oI y+HyL)oy+Cy' (Holy— HyI oy —Cy (HoI,+H, Lo,

Cl[(HzIz—Hny)a'x‘l‘ (Hxly+H1/Iz)°'y]

Cl[(HzIz—HyIﬂ)Ux+ (HIIM+HyIz)a-ﬂ:|+C2HZ(Ixa':t_—]yo'y)+C:}Ig(Hmaz_Ilya'y)
C1[(Hxlz—11yly)0'z+ (Hz]y+Hy1z)”u:]+C1,[(Hzlz_HyIV)o'w'— (Hz[y+HyIz)Uz]

Dup, Dy, Cay, Dog
Cin, C4y S4

Dep, D, Cev, Dan
Dsa, D3, Csy

Cen, Cs, Csn

Cil(H I —H L)oo+ (Holy+HyIo)o, J+C/ [ (Ho Lo —H D)oy — (Holy+HyI2)or ]

+C.H, (Iza'z_lﬂ"'u)‘l‘ciilz (Hzaz“Hyo'y) +C2,Hz (110'1/‘*“1110'1) +C3l1z (H:D‘Ty"l_Hydz)

CiL(1/V3) (Holz4-HyIy—2H I )ou+ (Ho Lz —HyI))oy ]

CiLAA/N3) (Ho I+ H Iy —2H, 1) oo+ (Holo—HyI)o, 1+C/'[(1/V3) (Holo+H I, —2H I )oy— (H I, — HyI )0, ]

D\H. I 1+Ds(H I,+H,I,)1

DiH I+ Da(Hol a4 HyI,)1+Ds(HoI,—H,I,)1

Dy(Ho I+ H,I,+H.I.)1

Csi, C3

On, 0, Ty

Th T

Dan, Ds, Caw, D2a; Den,
Ds, Coy, Dsa, Dsa,
D3, Cy,

Csn, Cs, Ss; Cen, Cs,
Csi, Csn, Cs

On, O, Tq, T, T

induce distortions, as they are invariant to any gen-
eralized symmetry operations introduced in Sec. II.
Summarizing the argument given here, we remark that
there is no freedom in the association of @; with ;.
Now let us discuss the problem related to the phase
of @;. In Tables III-V, some terms are given with
primed parameters. The matrix of the term with a
primed parameter can be obtained from that of the
corresponding term with an unprimed parameter by
replacing the unprimed parameter in the upper-right
nondiagonal element by the primed parameter times
—1 and that in the lower left by the primed parameter
times 7. For example, the linear terms in an electric
field for Cy;, and Cj; are given in Table IIT as
R(E.0,—E,0,)+R (Ecoy+Ey02). (23)
The matrix of the first term with parameter R is
calculated as

R(Ez+iEy)]' (24)

¢+[ 0
#_LR(E,—iE,) 0

Then, replacing R in the upper-right element in (24) by
—iR’ and R in the lower left by <R’, one obtains

B 0 —iR'(E,+1E,
40+|: iR/ (E.+1 )] (25)
o_LiR'(E,—iE,) 0

for the second term with R’ in (23). From (24) and (25),
the matrix of the terms in (23) is finally given as

7 0 Roe**(Es+iEy)
<P+|: 0€®( y ]’ 26)
$_LRye*(E,—iE,) 0
where Ry and « are real and given by
Ree’*=R—iR’. 27

Now, it is easy to see that parameter a can be eliminated

by choosing e?*/2@, and e~%*/2p_ as the basis in place
of @, and @_, respectively.

The above-mentioned argument shows that, if one
has a pair of primed and unprimed terms, one may
neglect one of them by choosing appropriate phase for
the basis set. However, one cannot do so for additional
pairs. For example, Table IIT shows that for Cs; we
have an additional pair, G; and G/, in the quadratic
terms in an electric field. In this case, we cannot elimi-
nate, say, both R and G/, at the same time by choosing
appropriate phase for the bases. Considering this fact,
we have listed all the primed and unprimed terms in the
tables without neglecting any of them. Mathematically,
the primed and unprimed terms are independent in-
variants in the sense that the matrix of one term cannot
be given by that of another.

As pointed out in Sec. II, one of the merits of our
method is that the physical origin of each term in the
effective Hamiltonian can be understood easily. This
enables us to estimate the order of magnitude of un-
determined parameters. For example, let us consider
the first-order terms of the electric field in the effective
Hamiltonian of the C3, symmetry group. In terms of
irreducible tensor operators, they are given as

R[E,V,(T¢")—E,V.(Ts")]

FR[EV (TeH)+E,V,(T¢")]. (28)

These terms are expected to be given by the second-
order perturbation involving an odd-parity potential
and a Stark term, such as

[e(Tst,4) | Voaades| o(T'st,—))+c.c. J/AE.

In the above expression, the summations over all the
intermediate states have been performed by making
the approximation of replacing the energy denominators
by a single average denominator AE. For the Cy;, sym-
metry group, the odd terms in the crystal field potential
are given by

Veaa=aV (L )40V (i),

(29)

(30)
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TasrLe VI. Selection rules for the transitions between the
magnetic- and the electric-field spilt levels of the non-Kramers
doublets.

Static Oscillating

field field Site symmetries
Hz Eosc| 2 S4, Daa
Eosc Lz Disn, D3, Can, Cay, Cs
Hlz Ho.ll 2 Dap, Dy, Cay, Dag, Cep
Cs, S4; Den, Ds, Cen, Cov, Dsa, Dsn, Cs, Ds,
Cs, Csiy Cao, Ca
Eosc H 2 S4, Dzd
Eosc Lz Dsp, Ds, Csp, Csy, Cs
E ” 4 Hose ” z 54, Dsyg
Eosc ” 2 S«l, Do
Elz Ho.l 2 Diun, D1, Cay, Dag, Ca
C4’ 54; Dsh, ])ﬁ, Csh, Cep, Dsd, Dzh, Cﬁ, DX;
Cs, Csiy Cao, Cap
Eosc| 2 S4, Daa
Eosclz Dsp, D3, Csp, Cay, Cs

2 This is allowed if the static-field terms of the third order are taken into
account.

where

V()= 2 id(CO+CW),

t=odd

V()= X B(C:W—C®),
t=odd
and the C,® is defined by C,®=[4x/(2i+1) 2V ,,:
¥y is the spherical harmonic function. The Stark term
3¢s for E_L z is as follows:

Ho=e[ Vo (Ts) E_+V(T5)E, ], (31)

where Vo (Ts")=7F(i/V2)(xxiy) and E,.=7F(i/V2)
X (E,=41E,). By using the table of the Clebsch-Gordan
coefficients,” one obtains

VeaadCs= (ae/AE) V(L) [V (Ts) E_+ V(T E, ]
+(be/AE)V (T ) [V (Ts ) E_+V_(T5)Ey ]
=(ae/AE)[EV(Ts")+E,V,(Ts) ]
+(be/AE)[E,V,(T6t)—E,V.(TsT)], (32)

where Vo (Tst)=7F(@/V2)[V(Ts")LiV,(Ts")]. Com-
paring (32) with (28), one sees that R and R’ are given
as

R=2i(be/AE){o(Ts+, ) | V(L) V_(T5)| o(TsH,—)),

R'=2(ae/AEXo(Tst,+) | V(L) V(T5)| o(T'sF,—)),
(33)

The presence of two terms R[E,V,(T'¢t) —E,V(T's")]
and R'[E.V.(T¢")+E,V,(T¢t)] for the Cs, symmetry
corresponds to that there are two independent odd terms
V(T5) and V(I'y) in the crystal field potential. For
the Dj;, symmetry, the odd term in the crystal field
potential is only V(T's"), so that only the first unprimed
terms is present in the effective Hamiltonian as shown
in Table III.

SHINAGAWA, AND SUGANO 1

B. Selection Rules

Selection rules for paraelectric and paramagnetic
resonance in the non-Kramers doublets are easily de-
rived from our effective Hamiltonian, when some of the
applied fields in the linear terms are regarded as oscillat-
ing fields of radiation. If static-field terms have diagonal
elements and oscillating-field terms have nondiagonal
ones, or vice versa, the oscillating field may induce
transitions between the split levels. Some caution is
necessary when both static and oscillating fields appear
in the nondiagonal. For example, let us consider the
case in which both the static electric field E and oscillat-
ing electric field E,q, are parallel to the z axis. Table ITI
shows that the splitting linear to E, is expected for
D54 and Sy from the terms RE.0, and RE,0,—R'E. 0,
respectively. We also have the terms proportional to
Eose, . of the same origin for these systems. In this case,
it is clear that for the basis set, for which the E, terms
are diagonal, the Fo, . terms are also diagonal inducing
no transition between the split levels. However, if one
takes into account the higher-order static-field terms,
the third-order terms in the present example, one may
expect nonvanishing terms linear to Eog,. in the non-
diagonal for the basis set for which all the static-field
terms are diagonal. Thus, the electric-dipole transitions
polarized along the z axis become allowed for D, and
Sy with E||z.

The selection rules derived in this way are listed in
Table VI. The table can also be used for the case in
which both static electric and magnetic fields are ap-
plied simultaneously. According to our careful examina-
tion, the transition in this case is allowed if it is allowed
for either one of the static fields.

Selection rules for circularly polarized radiation can
easily be derived in a similar way by reexpressing the
effective Hamiltonian in terms of

Eosc,j: =F (7//\/2) (Eosc,z:li iEosc,y)
and

Hosc,;t= + (l/ﬁ)(Hosc,:c:l:iHosu,y) .

For example, in D3, D3y, Cs,, Csp, and Cs, the electric-
dipole transition is circularly polarized when HJ|z, as
shown in (26). The sense of the polarization depends on
the sign of g,

It should be remarked that any transition is forbidden
for the cubic groups, Oy, O, T4, T's, and 7. To discuss
the selection rules for transitions between the hyper-
fine-split components, the selection rule Am=0 has to
be applied to nuclear states with nuclear magnetic
quantum number m(m=1I, I—1,---, —I), as the orien-
tation of the nuclear spin does not change during
electronic transitions.

In concluding this subsection, let us compare some
of our results with those obtained by the perturbation
theory and experiments. As an example, we consider
praseodymium ethylsulphate. The ground state of the
free Pr3* ion is 3H,(4f?), which, under the action of a
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crystalline field of Cj, symmetry, splits into a singlet
and four doublets.! The lowest doublet may be written
as Y1=a|J,=+4)+b|J.=—2) and yo=0a*|J.=—4)
+b*|J.=+42), where |a|2+|b|2=1. With H parallel
to the z axis, the eigenfunctions are simply ¢; and ..
The electric-dipole transition between these states is
parity forbidden. The matrix element of such parity-
forbidden electric-dipole transition in rare-earth ions
was derived by Judd!® and Ofelt.!! By using Eq. (13)
in Ref. 10, we obtain the selection rule J,—J,"=p-+q,
where p is the azimuthal quantum number of the odd-
parity terms of the crystalline-field potential (p==3
for Cy;, symmetry) and ¢=0 and ¢==-1 for the polariza-
tion E,sel|z and Eoq. L 2, respectively. The electric-dipole
transition Y=y, is, therefore, allowed for the polariza-
tion Egs Lz, since J,=-+4, —2, J/=—4, +2, and
g===1 in this case. This agrees with our result. Recent
EPR experiments on Pr3+ in ethylsulphate!? and in the
double nitrate salt!® have shown that the transitions
between the magnetic-field split levels of the non-
Kramers doublet are mainly induced by the high-fre-
quency electric field perpendicular to the trigonal axis.
The selection rule obtained here is consistent with these
experimental results.

C. Comparison with Other Methods

Mathematically, it is expected that our method gives
the same results as those given by the spin-one formal-
ism of Mueller, although the spin-one formalism starts
with an expanded subspace. Comparing the results of
both methods in detail, we have found that this expec-
tation is true if the spin-one formalism is applied
correctly, or if the following corrections are made in
Mueller’s Table IT of Ref. 4:

(1) The term (3)T[E.H,+E,H,]S, is not applicable
to S4, D4, Dz,i, D3, Dgh, and De.

(2) Theterm (H.E,—H,E,)S, is applicable to Dy, C4,
Ds, Cﬁ, Da, and C3, (HxEx—HyEy)Sz to 54} (HxEy
+H,E.)S. to Dyg and Sy. All these terms are missing.

(3) The term 3)[Gi(H,2—H2)(S,2—S,2)+2G.H H,

10 B. R. Judd, Phys. Rev. 127, 750 (1962).

1. G, S. Ofelt, J. Chem. Phys. 37, 511 (1962).

2 F. I. B. Williams, Proc. Phys. Soc. (London) 91, 111 (1967).

18 J. W. Culvahouse, D. P. Schinke, and D. L. Foster, Phys.
Rev. Letters 18, 117 (1967).
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X (S2Sy+S,Sz)] is applicable to Sy, but (3)G[(H.2
—H,2)(S.2 =S, ) +2H H,(S.5,4-5,5.)] is not.

(4) The missing term GoH,[H,(S.2—S,?) —H,(S.S,
+.S5,S.)] is applicable to D34, D3, Cs,, Css, and Cs.

All the terms corresponding to those with primed
parameters in our effective Hamiltonian, which have
been discussed in Sec. IV A, are not listed in Mueller’s
table in case they are accompanied by the correspond-
ing unprimed terms. They are as follows:

(1)’ The term E,(S,*—S,?) is applicable to S,.

(2)" The term [E.(S.Sy+SyS.)+E,(S:2—S,2)] is
applicable to C3, and Cs.

(3)" The term G{(H,>—H,*)(S:Sy+S,S2)+2G/H,
X H,(S,2—S,? is applicable to Cy, C4, and S,.

(4)" The term G/[(H.2—H,*)(SSy+S,S.)—2H H,
X (S,2—S,?)] is applicable to Cgpn, Cs, Can, Cs;, and Cs.

(5) The term Gy H.[Ho(S2S,+S,So)+H,(S2—S,2)]
is applicable to Cj; and Cj.

Koster and Statz!4 determined the general forms of
the secular matrices of the perturbation Hamiltonian
BH - (L+-28) for the states which diagonalize the crystal
field Hamiltonian, by using the first-order perturbation
theory. These secular matrices for the non-Kramers
doublets are the same as those of the linear magnetic-
field terms in the effective Hamiltonian obtained in the
present paper.

Recently, Murao, Spedding, and Good!s studied, by
the exhaustive use of group theory, the Zeeman effect
for optical spectra of rare-earth ions in the crystal field
with Cg, symmetry. The results obtained by them for
an even number of electrons are as follows: (1) When
H]||z, non-Kramers doublets split in the first order; (2)
when H 1 z, non-Kramers doublets show no first-order
effect and they shift and split in the second order.
These results are consistent with the ones obtained in
the present paper.

ACKNOWLEDGMENT

One of the authors (K.S.) is grateful to Professor
Y. Tanabe for his advice and encouragement.

% G. F. Koster and H. Statz, Phys. Rev. 113, 445 (1959); 115,
1568 (1959).

1 T. Murao, F. H. Spedding, and R. H. Good, Jr., J. Chem.
Phys. 42, 993 (1965).



